
Semiclassical analysis of tunnelling splittings in periodically driven quantum systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 1659

(http://iopscience.iop.org/0305-4470/30/5/026)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:13

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 1659–1677. Printed in the UK PII: S0305-4470(97)77025-2

Semiclassical analysis of tunnelling splittings in
periodically driven quantum systems

H J Korsch†§, B Mirbach‡ and B Schellhaaß†
† Fachberiech Physik, Universität Kaiserslautern, D-67653 Kaiserslautern, Germany
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Abstract. For periodically driven systems, quantum tunnelling between classical resonant
stability islands in phase space separated by invariant KAM curves or chaotic regions manifests
itself by oscillatory motion of wavepackets centred on such an island, by mulitplet splittings of
the quasienergy spectrum, and by phase space localization of the quasienergy states on symmetry-
related flux tubes. Qualitatively different types of classical resonant island formation—due to
discrete symmetries of the system—and their quantum implications are analysed by a (uniform)
semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic
oscillator.

1. Introduction

The generic phase space structures of classical Hamiltonian systems show an intricate
mixture of regular motion on invariant tori and chaotic space filling dynamics. The quantum
manifestation of the Poincaré scenario in the statistics of energy spectra, fluctuation of
expectation values and wavepacket dynamics is still debated today. An important aspect in
this classical-quantum correspondence is the tunnelling dynamics between classical regular
regions in phase space divided by separatrices or chaotic layers. Whereas the tunnelling
phenomenon is easily understood semiclassically for tunnelling through potential barriers,
the general case ofdynamical tunnelling[1], for example, tunnelling through a classically
chaotic region, is far from being fully explored.

The present paper addresses several aspects of a semiclassical analysis of dynamical
tunnelling. For simplicity, we will confine our discussion to the case of one-dimensional
time-periodic systems, which model, for example, atomic or molecular dynamics in laser
fields or driven mesoscopic systems. Such ‘one and a half’-dimensional systems show
most of the relevant dynamics and allow, on the other hand, extensive numerical studies
in the semiclassical regime of small ¯h. A considerable number of previous studies on
dynamical tunnelling have been carried out for systems of this type, as for instance the
studies of a driven double-well oscillator by Lin and Ballentine [2, 3], Peres [4], Plata and
Gomez Llorente [5], and Ḧanggi and co-workers [6–10], the analysis of a generalized kicked
rotator [11, 12] or a harmonically driven planar rotor [13] as well as the kicked Harper model
[14, 15]. Very recently, the level splitting distribution in chaos-assisted tunnelling two space
dimensions has been studied by Leyvraz and Ullmo [16].

§ E-mail address: korsch@physik.uni-kl.de

0305-4470/97/051659+19$19.50c© 1997 IOP Publishing Ltd 1659



1660 H J Korsch et al

In section 2, we give a brief description of the classical dynamics of the model
system. Based on the semiclassical pendulum quantization of KAM resonances derived
in a preceding paper [17]—in the following denoted as paper I—a semiclassical analysis
of the quasienergy quantization of resonances is presented in section 4. The tunnelling
splitting of the quasienergies is discussed in section 5. In particular the structure of the
quasienergy spectra, the tunnelling integral over the classical forbidden region and the
scaling withh̄ are discussed, as well as the differences for the cases of tunnelling between
classically connected or disconnected flux tubes. In section 6, the semiclassical dynamics
of wavepacket tunnelling between the stability regions is studied.

2. Classical division of phase space

In the present study, we choose as an example the linearly forced anharmonic oscillator

H(p, x, t) = p2

2m
+ b

4
x4− λx cos(ωt) (1)

with unitsm = b = ω = 1, which is time-periodic with periodT = 2π/ω.
Forλ = 0, the system reduces to the time-independent (and therefore integrable) quartic

oscillator, where a phase space point moves on the energy shellH(p, x) = E with frequency
ω1, which increases withE. For small values of the force amplitudeλ, the oscillations in
resonance with the driving force,ω1 : ω = r : s with integersr and s, are typically
distorted, and a chain of elliptic and hyperbolic fixed points appears. For increasing values
of λ, the resonance zones grow and the separatrix dividing the resonance motion from the
outer non-resonant oscillation develops into a chaotic layer. Finally, the resonance zones
overlap and global chaos sets in. For the parameterλ = 2

81

√
3 ≈ 0.014 2556 (see [18] for

the motivation of this special choice) the phase space is predominantly filled by regular
motion with isolated resonances, the largest ones atω1 : ω = 2 : 4, 1 : 3, 2 : 8, 1 : 5 and
1 : 7 as shown in the stroboscopic Poincaré section at timest = nT , n = 0, 1, 2, . . . , in
figure 1.

The Hamiltonian (1) is invariant under the discrete symmetry

(p, x, t)→ (±p,−x, t + T/2) (2)

which appears also in the driven double-well potential (see, e.g. [3, 4]). The dynamical
symmetry (2) has important consequences for the phase space organization of the resonant
motion. There are two possibilities.

(i) The phase space tube surrounding the periodic orbit at the centre of the resonance
is invariant under the symmetry (2). In this case, a Poincaré section of the flux tube at
t = (n + 1

2)T will be a mirror image with respect tox = 0 (andp = 0) of the Poincaŕe
section att = nT as, for example, for the ‘odd’ resonances 1 : 3 and 1 : 5.

(ii) There are groups of disconnected resonance tubes, each of which violates the
symmetry and transforms into another member of this group under the symmetry operation
(2). This is a general consequence of the symmetry of the time translationt → t + T/2:
it can still be shown that every even resonance chain breaks up into two disconnected
ones, where neighbouring islands belong to different chains. A Poincaré section at time
t = (n+ 1

2)T will interchange these pairs. In the present case, this is observed for the even
2 : 4 and 2 : 8 resonance.

The topology of the cable of intertwined flux tubes in(x, p, t) space can be very
complicated. Various graphical illustrations of such a cable can be found in the literature
(see, e.g. [19, figures 8.3-3] for an outstanding example). Here we will confine ourselves



Analysis of tunnelling splittings in quantum systems 1661

Figure 1. Stroboscopic Poincaré section for a weakly driven quartic oscillator showing resonance
regions forω1/ω = 1

2 ,
1
3 ,

1
5 , . . .. The period-two motion appears as two disconnected pairs of

islands.

Figure 2. Two pairs of resonant flux tubes surrounding an elliptic orbit of period two. Two
different trajectories are plotted as a function of timet moduloT = 2π .

to the group of flux tubes of single isolated resonances, as illustrated in paper I in(x, p, t)

space. Figure 2 shows as an example the projection of such a group of flux tubes on
the (x, t) plane for the 2 : 4 resonance. As discussed in (ii) above, we see two pairs of
disconnected tubes. Quantum mechanically, these four segments of tubes will lead to four
(almost degenerate) quasienergy states, as discussed in detail in the following sections.

Table 1 lists the important parameters of the classical resonance dynamics, the area
A− enclosed by the largest invariant non-resonant curvebelow the resonance, the areaA+
enclosed by the smallest invariant non-resonant curveabovethe resonance and the resonance
areaA = A+ − A−. The average of the areasA+ andA− determines approximately the
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Table 1. Parameters of some classicalr : s resonances

r : s A− A+ A ω0T S+po

1 : 1 3.097 80 5.090 07 1.991 86 0.064 48 1.066 92
2 : 4 0.485 28 0.528 51 0.043 23 0.014 26 0.126 21
1 : 3 0.110 96 0.192 11 0.081 15 0.072 19 0.038 78
1 : 5 0.028 37 0.036 10 0.007 54 0.031 81 0.006 49
2 : 5 0.867 80 0.883 54 0.015 24 0.006 94 0.655 24
1 : 7 0.011 12 0.012 16 0.000 88 0.010 69 0.000 64
2 : 7 0.315 98 0.322 70 0.006 60 0.008 13 0.236 89
1 : 9 0.005 34 0.005 53 0.000 00 0.003 14 0.000 00

average action-variableI = ∮ p dx/2π of the resonance zone

I1,0 = 1

4π
(A+ + A−). (3)

In addition, the eigenvalues of the stability matrix e±iω0T at the stable fixed point are needed
in the following, as well as the action integralS+po along thes-periodic orbit at the fixed
point.

In the following, we will analyse in detail the dynamics of the 1 : 3 resonance centred at
the periodic orbit started at, for example,(p, x) = (0, 0.385) and the 2 : 4 resonances, i.e. the
symmetry-related pair of two-periodic orbits started at, for example,(p, x) = (0,−0.600)
or (0.246,−0.027), respectively (compare with figure 2).

3. Quantum quasienergies and scaling properties

The quantum dynamics of a time(T )-periodic system can be conveniently described in
terms of the quasienergy (Floquet) states

9ν(t) = e−
i
h̄
εν tuν(t) with uν(t + T ) = uν(t) (4)

which closely resemble the eigenstates of time-independent systems. The quasienergiesεν
are only defined by (4) up to integer multiples of ¯hω(ω = 2π/T ). It is therefore convenient
to define the quasiangles

θnu = ενT /h̄. (5)

For Hamilitonian (1), the quasienergy spectrum is a pure point spectrum [20].
The time-periodic Schrödinger equation

ih̄
∂ψ

∂t
= − h̄

2

2m

∂2ψ

∂x2
+
(
b

4
x4− λx cos(ωt)

)
ψ (6)

can be simplified by scaling the variables and parameters as

t ′ = ωt x ′ = x b1/2

ωm1/2
λ′ = λ b1/2

ω3m3/2
h̄′ = h̄ b

ω3m2
(7)

which transforms (6) into

ih̄′
∂ψ

∂t
= −h̄

2

2

∂2ψ

∂x2
+
(

1

4
x4− λ′x cost

)
ψ. (8)

The quasienergies scale as

ε′ = ε b

ω4m2
(9)
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and the quasiangles are, of course, independent of the scaling.
Here we will use the scaled quantities (dropping the prime in the following sections).

In the classical limit, the dynamics depends only on a single parameter,λ′, and the (scaled)
Planck constant, ¯h′, of the quantum dynamics can be controlled by changing the frequency,
ω.

4. Pendulum quantization and semiclassical analysis

Semiclassical EBK quantization techniques for the quasienergy states for time-periodic
systems have been developed and studied recently [21, 22]. They allow a quantization in
two independent steps, in contrast to related methods for general two-dimensional systems
(see, e.g. [23, ch 7.3] and references therein).

For a non-resonant motion, the first quantization step determines the classical torus with
quantized action

I1 = 1

2π

∮
γ1

p dx = h̄
(
n1+ µ1

4

)
n1 = 0, 1, . . . (10)

where γ1 is a closed path following the intersection of the torus with the stroboscopic
Poincaŕe section andµ1 is the Maslov index of the path (e.g.µ1 = 2 for a liberational
motion with two turning points). The subsequent step simply determines the quasienergies

εn1,n2 = ω1

(
n1+ µ1

4

)
− 〈L〉 + h̄ωn2 (11)

in terms of the torus average or, equivalently, the long-time average of the Lagrangian

〈L〉 = lim
k→∞

1

kT

∫ kT

0
L(x, ẋ, t)dt. (12)

The frequencyω1 in (11) is the angular frequency corresponding to the actionI1. It should
be noted that the quantum mechanical quasienergies are only determined up to multiples of
h̄ω, and the term ¯hωn2 in (11) is irrelevant.

Due to the phase space organization in the one-dimensional case, the quantization
condition (10), which labels the torus supporting the quasienergy staten1, also counts
the number of states supported by the phase space regionenclosedby the curveγ1, which
is given by

n1+ 1= 1

h
(area enclosed byγ1)+ µ1

4
. (13)

We therefore expect (forµ1 = 2) N+ = A+/h + 1
2 states supported by the phase space

region inside the quantized invariant torus above the resonance (staten+1 = N+ − 1) and
N− = A−/h+ 1

2 states below the resonance region, i.e. the quasienergy state with quantum
numbern−1 = N− − 1 is the highest state below. TheN+ − N− = A/h resonance states
must be labelled in a different manner. For the value ¯h = 0.0005 we haveN = A/h ≈ 26
states localized on the 1 : 3 resonance islands chain andN = A/h ≈ 14 states on the four
2 : 4 resonance islands.

In comparison with exact results, the semiclassical quantization of non-resonant tori,
i.e. tori outside the resonance zones, proved to yield very good results as demonstrated
in paper I. Even in cases close to resonances, where the quantizing tori are already
destroyed and chaotic layers exist, interpolation techniques yield good approximations to the
quasienergies, as long as the resonances zones are small compared with Planck’s constant
[22]. In paper I, the semiclassical quantization of the KAM resonances, and in particular
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the case of large resonances supporting several quantum states, has been addressed in more
detail. At resonance, i.e. for a rational frequency ratioω1 : ω = r : s(r, s ∈ N, the relevant
dynamics is described by a pendulum (see [24] for a related pendulum approximation applied
to periodically driven hydrogen atoms). The wavefunctions,8(ϕ), for this pendulum satisfy
the Mathieu differential equation(

d2

dϕ2
+ a − 2q cos(sϕ)

)
8(ϕ) = 0 (14)

whereϕ is the pendulum angle.
In the classical limit, the pendulum motion can execute librational (fora > 2q) or

rotational (fora < 2q) motion in different regions in phase space divided by the separatrix
(a = 2q). The area enclosed by the separatrix is 16

√
q, which must be mapped onto the

classical resonance areaA divided by h̄ (compare with section 2). This determines the
Mathieu parameter

q = (A/16h̄)2. (15)

The boundary conditions for the solutions of (14) are

8l

(
ϕ + 2π

s

)
= exp

(
i
2π

s

(
l + µ

4

))
8l(ϕ) l = 0, . . . , s − 1 (16)

where the ‘Maslov index’µ is determined by

µ

4
=
(
µ1

4
− 1

h̄
I1,0

)
mods (17)

(note the wrong sign in equation (48) of paper I). Here,I1,0 is the location of the resonance,
which is given by the average action (3). It should be noted that the Maslov indexµ is real
valued, i.e.not equal to an integer.

As well known from the theory of the Mathieu equation, the boundary condition (16)
determines (for any value ofl) a characteristic value ofa inside the stability bands numbered
by j = 0, 1, . . . , i.e. one obtains the characteristic valuesaj,l , which finally map onto the
quasienergies by

εj,l,n2 = ε′j,l + h̄ω
(
n2+ r

s
l
)

(18)

with

ε′j,l = −
1

sT
S+po+

h̄ω0

2s
√
q
(aj,l + 2q)+ h̄ωµ1r

4s
. (19)

The quasienergiesεj,l,n2 taken modulo ¯hω/s agree with theε′j,l .
Let us recall from paper I thatS+po is the classical action along thes-periodic orbit centred

at the elliptic fixed point andω0 is the characteristic frequency for the motion close to the
fixed point determined by the eigenvalues of the stability matrix. As discussed in detail
in paper I, an expression equivalent to (19) can be derived using data from the hyperbolic
fixed points.

In the following, the structural organization of the semiclassical resonance spectrum is
analysed. Quite conveniently, we will use the solid-state term ‘band’ to describe a set of
quasidegenerate levels (modulo ¯hω(n2+ r/s)) belonging to symmetry-related flux tubes.

In paper I, a detailed comparison of exact quantum results demonstrated the quality of the
semiclassical pendulum quantization for resonances as well as the semiclassical assignment
of quantum numbers, which reveals the underlying structure of the spectrum. In particular,
the quasienergies of states localizing on ar : s resonance appear ass-multiplets, which are
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almost degenerate if they are taken modulo ¯hω/s. The presented uniform method provided
already quasienergy splittings due to tunnelling. The characteristic values of the Mathieu
equation (14) were determined numerically in paper I.

It is, however, more informative in the present context of a semiclassical approximation
to treat also the quantization of the Mathieu equation semiclassically. A uniform semi-
classical solution of the one-dimensional time-periodic Schrödinger equation is known and
explored in particular in the Mathieu case. Here we follow the treatment by Connoret al
[25]. The semiclassical quantization condition for the solution of the Mathieu equation (14)
with boundary condition (16) reads

cos(α − φ) = [1+ exp(−2πε)]−1/2fl ` = 0, . . . , s − 1 (20)

where the factors

fl = cos
2π

s

(
l + µ

4

)
(21)

satisfy the sum rule
∑
fl = 0. Here,

α =
∫ ϕ+

ϕ−

√
a − 2q cos(sϕ)dϕ (22)

is the action integral over the well and

πε = ±
∫ ϕ+

ϕ−

∣∣∣√a − 2q cos(sϕ)
∣∣∣ dϕ (23)

is the tunnelling integral over the forbidden region (the ‘barrier’). The boundaries of
integration are the zeros of the integrand (the ‘classical turning points’), which are real
valued fora 6 2q and complex fora > 2q. The sign in (23) is chosen so thatε is negative
below and positive above the barrier ata = 2q.

Because of the phase correction term

φ(ε) = ε + arg0
(

1
2 + iε

)− ε ln |ε| = −φ(−ε) (24)

the semiclassical formula is valid uniformly below and above the barrier. For the Mathieu
case, the phase integrals can be expressed by

α = √q 8

s

{
E(k)− k′2K(k) a 6 2q

kE(k−1) a > 2q
(25)

πε = √q 8

s

{
E(k′)− k2K(k′) a 6 2q

K(|k′|/k)− E(|k′|/k) a > 2q
(26)

in terms of elliptic integrals E(k) and K(k) with k2 = (a+2q)/4q andk′2 = 1−k2 following
the notation in [26]. At the separatrixa = 2q we have

αsep= 8

s

√
q and ε = φ = 0 (27)

Equation (20) can be rewritten [25] as

α − φ = π(j + 1
2)− (−1)j arctan

fl√
1− f 2

l + exp(−2πε)
(28)

where j = 0, 1, . . . counts the consecutive multiplicities of the arctan function and
determines the ‘band number’.

The numerical solution of (20) or (28) determines the uniform semiclassical
characteristic valuesaj,l of the Mathieu equation for boundary condition (16). Figure 3
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Figure 3. Semiclassical quantization condition (20) as a function of the Mathieu parametera

for a period three(s = 3) chain in figure 1(h̄ = 0.0005). The three branches of the right-hand
side differ by the factorfl , l = 0, 1, 2.

illustrates this for the case of a three-island chain(s = 3) and parameterq = 101.7
(adapted to the period-three chain of resonances shown in figure 1), Maslov indexµ ≈ 1
andω0 = 0.071 29. Both sides of the equality (20) are shown separately as a function of
a (note that the right-hand side leads to three branchesl = 0, 1, 2 because of the factor
fl). In figure 3, we havef2 ≈ 0, f0 = 0.867, andf1 = −0.867 (note that for different
parameters these values are different, in particular we havef2 6= 0 and f0 6= −f1 as
demonstrated numerically below). The right-hand side of (20) changes continuously from
zero to a plateau,fl , with a steep increase in the vicinity ofa = 2q at the separatrix, where
the tunnelling integral is zero. The intersections of the curves determine the characteristic
valuesaj,l . For the eight bandsj = 0, 1, . . .7 inside the separatrix atasep= 2q ≈ 203, the
splittings of thea-values are small.

The numerical results for the quasiangles for the 1 : 3 resonance states are listed
in table 2, where the quasianglesθ ′ are taken modulo 2π/3. The θ ′ appear as almost
degenerate triples, which are clearly organized in bands numbered byj . A first assignment
of the semiclassical quantum numbersl = 0, 1, 2 is supported by the shiftsπl/3 of the
θ -triple before the modulo operation. Also shown in the table are the present semiclassical
quasienergies (column scl(2)) obtained from (19), which are in very good agreement with the
more elaborate ones given in paper I (listed in column scl(1)). (Note that thel numbering
in paper I differs from the present one.) Furthermore, one observes that the triple of
quasiangles forl = 0, 1, 2 changes its order for odd or even values of the band number
j , which is easily explained semiclassically because of the alternating sign of the slope
of the cos function in figure 3. Interestingly, the semiclassical quasienergy splittings yield
good approximations to the exact splittings even for states localizing definitely outside the
resonance, i.e.j > 8. There the underlying pendulum approximation loses its legitimation,
and the absolute values of the semiclassical quasienergies increasingly deviate from quantum
values. The noticeable deviation between the semiclassical and the quantum values for the
extremely small splittings in the lowest bands, however, are due to the limited accuracy in
the quantum computations.
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Table 2. Semiclassical and exact quantum quasianglesθ ′j l = ε′j lT /h̄ (modulo 2π/3) for the 1 : 3
resonance states. The quantum numbers(j, l) are assigned semiclassically. The exact quantum
results are compared with the semiclassical approximation scl(2) and with those obtained from
the more elaborate method in paper I (scl(1)).

Quasiangles Energy splittings

j l Quantum scl(1) scl(2) Quantum scl(1) scl(2)

0 0 0.5467 0.5458 0.5472
0 1 0.5467 0.5458 0.5472 1.49e− 09 1.31e− 11 1.68e− 11
0 2 0.5467 0.5458 0.5472
1 0 0.9816 0.9818 0.9832
1 1 0.9816 0.9818 0.9832 3.82e− 09 1.28e− 09 1.24e− 09
1 2 0.9816 0.9818 0.9832
2 0 1.3969 1.3993 1.4007
2 1 1.3969 1.3993 1.4007 2.55e− 08 5.79e− 08 1.24e− 08
2 2 1.3969 1.3993 1.4007
3 0 1.7913 1.7967 1.7981
3 1 1.7913 1.7967 1.7981 1.30e− 06 1.61e− 06 1.59e− 06
3 2 1.7913 1.7967 1.7981
4 0 0.0683 0.0776 0.0790
4 1 0.0683 0.0776 0.0790 2.56e− 05 3.07e− 05 3.04e− 05
4 2 0.0683 0.0776 0.0790
5 0 0.4144 0.4284 0.4298
5 1 0.4140 0.4280 0.4294 3.29e− 04 4.16e− 04 4.13e− 04
5 2 0.4144 0.4282 0.4296
6 0 0.7290 0.7475 0.7490
6 1 0.7325 0.7515 0.7530 3.52e− 03 4.01e− 03 3.99e− 03
6 2 0.7296 0.7494 0.7509
7 0 1.0194 1.0460 1.0475
7 1 0.9954 1.0203 1.0219 2.39e− 02 2.57e− 02 2.56e− 02
7 2 1.0099 1.0321 1.0337
8 0 1.1995 1.2279 1.2296
8 1 1.2836 1.3162 1.3177 8.41e− 02 8.83e− 02 8.81e− 02
8 2 1.2333 1.2639 1.2656
9 0 1.5619 1.5822 1.5837
9 1 1.3904 1.4194 1.4210 1.72e− 01 1.63e− 01 1.63e− 01
9 2 1.4477 1.4941 1.4956
10 0 1.1674 1.6802 1.6816
10 1 1.8068 1.8903 1.8916 1.89e− 01 2.10e− 01 2.10e− 01
10 2 1.7744 1.7820 1.7834
11 0 0.1430 0.1497 0.1509
11 1 2.0121 2.0032 2.0045 1.87e+ 00 1.98e+ 00 1.98e+ 00
11 2 2.0144 0.0272 0.0285
12 0 0.1796 0.2774 0.2786
12 1 0.4647 0.5454 0.5466 2.85e− 01 2.68e− 01 2.68e− 01
12 2 0.3803 0.4089 0.4101
13 0 0.8951 0.9790 0.9801
13 1 0.6312 0.6855 0.6867 2.64e− 01 2.93e− 01 2.93e− 01
13 2 0.7726 0.8305 0.8316

Figure 4 shows the quasianglesθj for the 1 : 3 resonance states taken modulo 2π/3
as a function of the band numberj (compare with figure 6 of paper I). The quasiangles
(modulo 2π/3) appear as almost degenerate triples, where the splitting increases withj , as
discussed in detail in the following section. For the average valuef̄ = ∑

l fl/s = 0 we
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Figure 4. Quaisanglesθ ′ (modulo 2π/3) for the 1 : 3 resonance states as a function of the band
numberj (integer multiples of 2π/3 are added so that the data increase withj ). The almost
degenerate triples forl = (◦ ), 1(♦), and 2(+) changes its order for odd and evenj . The broken
and dotted curves show the variation of the semiclassical band centre and band boundaries.

have (compare with (28))

α − φ = π (j + 1
2

)
(29)

which determines the band centreāj as a function ofj . More directly, the inverse function
is explicitly given as

j̄ = 1

π
(α − φ)− 1

2
(30)

whereα andφ are given in (22) and (24) as a function of the parametera, which can be
determined from (19):

a(θ ′) = 2s
√
q

ω0T

(
θ ′ + S

+
po

sh̄
− 2π

µ1r

4s

)
− 2q. (31)

Therefore, (30) provides the typical dependence of the band centre as a function of the
quasiangleθ ′ valid uniformaly across the separatrix. Similarly, the semiclassical band
edges can be determined from (28) using the extreme casef` = ±1. This leads to

j± = j̄ ± arctan(exp(πε)) (32)

which increases withε from zero below the separatrix tōj ± 1
2, i.e. the j band width

approaches unity.
Both, the band centre and the upper and lower band edges are also shown in figure 4

as broken or dotted curves, respectively. We observe a marked change of the slope close
to the separatrix band number estimated as

jsep= A/sh− 1
2 (33)

which yieldsjsep= 8.06 in agreement with figure 4. For larger band numbers, the triple
of exact quantum values follow the semiclassical boundaries. Finally, it should be noted
that well below the barrier−πε is very large in the semiclassical limit and the tunnelling
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contribution in (28) can be neglected(φ = 0) and we recover the primitive semiclassical
quantization (see paper I)

α = π (j + 1
2

)
(34)

in agreement, of course, with the band centre (29) forφ = 0. In this limit, ε′j,l in (19) is
l-independent

ε′j,l ≈ ε′j = −
1

sT
S+po+

h̄ω0

2s
√
q
(āj + 2q)+ h̄ωµ1r

4s
. (35)

Even more drastically, the elliptic functions in (26) can be expanded to first order ink2 and
one obtains

ε′j ≈ −
1

sT
S+po+ h̄ω0

(
j − 1

2

)
+ h̄ωµ1r

4s
(36)

i.e. a contribution from the central periodic orbit and an additive harmonic oscillator ladder
from the harmonically approximated pendulum. Formula (36) can also be obtained from
the torus quantization by expanding expression (11) to the first order in the actionI1, which
agrees with the narrow approximation by Bensch and Thylwe [27] for the case of a single
flux tube.

The localization properties of states related to the 1 : 3 resonance are most clearly
detected in the quantum phase space densities, as for instance the Husimi density

%(p, x) = |〈p, x|9〉|2 (37)

which is simply the projection on minimum uncertainty states localized at point(p, x) in
phase space:

〈y|p, x〉 =
(
s

πh̄

)1/4

exp

(
− s(y − x)

2

2h̄
+ i

h̄
py

)
. (38)

Figure 5 shows the Husimi distribution for a number of selected states computed from the
exact quantum states. As in paper I, the exact quasienergy states are ordered according to
increasing expectation values〈α|Ĥ (t = 0)|α〉. Here we use an index,γ , to number the
states in this way. In addition, the semiclassically assigned quantum numbers(j, l) are
given. As expected, states withj < 8 localize on the stability islands, as shown for the
lowest states (the resonance ‘ground states’)j = 0 and the excited statesj = 3. With
increasingj , the Husimi distributions show an increasing number of maxima, but—for low
j—the distributions for the threel substates are almost identical. This changes, however,
the vicinity of the separatrix. The three ‘separatrix states’ withj = 8 show a pronounced
localization in the vicinity of the hyperbolic fixed points, where two maxima are observed
close to these unstable fixed points. States(j, l) = (8, 0) and (8, 1) localize predominantly
on the outer, whereas state(j, l) = (8, 2) localizes on the inner branch of the separatrix. The
states in the next higher band,j = 9, also populate the hyperbolic fixed points, however,
clearly outside the classical separatrix (state(j, l) = (9, 2) is shown as an example) and,
consequently, these states can be quantized also by primitive EBK torus quantization on a
torus outside the separatrix (see paper I).

As an example of the organization of quasienergies for an even resonance, the
r : s = 2 : 4 resonance will be discussed in some detail. As already pointed out in
section 2, an even resonance breaks up to two disconnected subchains, i.e. we observe a
chain of four two-periodic islands in the classical Poincaré section in figure 1, where the
pairs of opposite islands are connected by a flux tube. As shown in figure 2, the two pairs
of disconnected flux tubes interchange their position each half period,T/2. Therefore, after
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Figure 5. Quantum Husimi phase space distributions for a number of selected states with
semiclassically assigned quantum number(j, l) related to the 1 : 3 resonance. States withj < 8
localize on the stability islands, as shown for the lowest states (the resonance ‘ground state’)
j = 0 and the excited statesj = 3. The statesj = 8 localize on the separatrix andj = 9 in
the region outside the separatrix.

one periodT , each pair of flux tubes is at its starting position; however, the position of the
flux tubes within such a pair is restored only after 2T .

The total resonance area isA = 0.043 23 and we expect 14 states localized inside
the resonance islands. The semiclassical parameterq is therefore equal to 29.187 and the
separatrix band (33) is expected atjsep ≈ 2.9. Furthermore, we have a Maslov index
µ = 12.608. A semiclassical quantization of such an island chain has been derived in
section 6 of paper I, which leads to the simple semiclassical quantization of each of the
two-periodic flux tubes as discussed above. This yields two sets of quasiangles, which are
degenerate modulo 2π/s = π .
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Table 3. Semiclassical (first line, scl) and exact quantum (second line, qm) quasiangles
θ ′j l = ε′j,lT /h̄ (modulo 2π/2) for the 2 : 4 resonance states. The quantum numbers(j, l)

are assigned semiclassically.

j l = 0 l = 1 l = 2 l = 3

0 scl 1.0974 1.0975 1.0975 1.0975
qm 1.0958 1.0958 1.0958 1.0958

1 scl 1.2236 1.2240 1.2234 1.2231
qm 1.2218 1.2221 1.2216 1.2212

2 scl 1.3298 1.3266 1.3321 1.3363
qm 1.3281 1.3244 1.3296 1.3344

3 scl 1.4189 1.4411 1.4101 1.3986
qm 1.4141 1.4403 1.4099 1.3959

4 scl 1.4959 1.4658 1.5119 1.5517
qm 1.4984 1.4616 1.5041 1.5554

5 scl 1.6371 1.6877 1.6161 1.5707
qm 1.6258 1.6953 1.6218 1.5615

Figure 6. Quasianglesθ ′ (modulo 2π/2) for the 2 : 4 resonance states as a function of the band
numberj . The almost degenerate pair forl = 0, 2 (◦,×) and l = 1, 3 (�,+) change their
order for odd and evenj . The broken and dotted curves show the variation of the semiclassical
band centre and band boundaries.

The semiclassical and exact results are compared in table 3 and figure 6, where also the
semiclassical band centre and band edges are shown. The overall trend of the quasienergy
spectrum is reproduced semiclassically, in particular the approximate degeneracy (modulo
2π/s), the formation of four-tuples in separate bands, the variation of the band centre as
well as the increase of the band width. The levels inside a band are split into two pairs
(l = 0, 2 andl = 1, 3) with roughly the same quasienergy differences. The position of these
pairs inside a band interchange with odd/even band numberj .
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5. Tunnelling splittings of the quasienergies

Let us now look at the tunnelling splittings of the quasienergies for narrow bands well below
the barrier, i.e. for parameters of the Mathieu equation (14) in the region−2q < a � 2q.
Following [25], the splittings of the characteristic valuesa of the Mathieu equation are
approximated by expandingα–φ in the neighbourhood of the band centre (29). The half
width of the bandj is approximately given by

1j = d(α − φ)
da

∣∣∣∣−1

aj

e−πεj (39)

with

d(α − φ)
da

∣∣∣∣−1

aj

= sπ
√
q

K(k)
(40)

andεj = ε(aj ) (note that−16 fl 6 1). Using again the expansions for the elliptic integrals
[26], the phase integralα over the well and the tunnelling integral are approximately given
by

α ≈ 2π

s

√
qk2 (41)

πεj ≈ 8

s

√
q

[
1− k

2

2
ln

(
4

k

)
− k

2

4

]
(42)

and the splitting of thea-values in bandj can be written (using (34)) as

1j ≈ s2

π
24(j+1/2) ej+

1
2− 8

s

√
q

(j + 1
2)
j+1/2

(
2

s

√
q

)j+ 3
2

. (43)

The individual characteristic values inside bandj are then given by

aj,l = aj − (−1)j1jfl (44)

with an average value ofaj .
Semiclassically, the ¯h-dependence of the tunnelling splitting is of interest. With√

q = A/16h̄ in (43), the combined polynomial-exponential dependence can be written
as

1j ∼ h̄−(j+3/2)e−δ/h̄ (45)

with δ = A/2s. The approximate quasienergies in bandj—taken modulo ¯hω/s—given in
(19) are

ε′j,l ≈ ε′j +1ε′j fl (46)

whereε′j is defined in (35), and

1ε′j = −h̄ω0
8h̄

sA
(−1)j1j . (47)

The splitting of the quasiangles (5)—modulo 2π/s—can then be written equivalently as

θ ′j,l = θ ′j +1θ ′j fl (48)

with

1θ ′j = −ω0T
8h̄

sA
(−1)j1j (49)
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which shows—up to the additional factor of ¯h—the same ¯h-scaling as (45):

(1θ)j ∼ h̄−(j+1/2)e−δ/h̄. (50)

Two different origins of the splittings should be distinguished.
(i) The tunnelling integral,πεj , resulting from a classically forbidden transition between

the classical stability islands determines the overall splitting of the band, i.e. the band width.
(ii) The quasienergies of individual states of thes-tuple in each band are split by the

termsh̄ωrl/s(l = 0, . . . , s − 1), which disappear when taken modulo ¯hω/s, as well as by
the fl-terms (21). These splittings arise from the matching conditions for the phases and
are closely related to the symmetry properties of the states.

Semiclassical tunnelling through classically forbidden regions in phase space for
two-dimensional time-independent systems has been discussed by Wilkinson [28], who
conjectured a scaling of the energy splittings as

1E − h̄−3/2e−S/h̄ (51)

where S is a constant, in agreement with the scaling (45) for the lowest band. This
scaling law is, however, based on the existence of the classical tori, i.e. on the approximate
integrability of the system. Deviations from this simple scaling law for strongly distorted
systems are likely, where the classical separatrix develops into a chaotic layer (see [14] for
a recent study).

6. Wavefunctions and wavepacket dynamics

In this section we will describe the semiclassical wavefunction supported by a group of flux
tubes in more detail, as well as the symmetry and localization properties and the suppression
of tunnelling.

6.1. Tunnelling between flux tubes

The semiclassical (EBK) quantization of quasienergy states [17, 21, 22] provides
semiclassical wavefunctionsv(t), which are supported by the singlesT -periodic flux
tube following the periodic orbit at its centre. Defining segmentsv

(ν)
j (t) = vj (t + νT ),

ν = 0, . . . , s − 1, of lengthT , we can construct as-fold centre of flux tubes in the period
06 t 6 T (see figure 2 in paper I for an illustration).

Neglecting tunnelling, it was shown in paper I that the primitive semiclassical
quasienergy states for the island chain can be built up from this flux cable. The quasienergy
wavefunction is given by

9j,l,n2(t) = e−iεj,l,n2 t/h̄uj,l,n2(t) ≈ e−iεj t/h̄uj,l,n2(t) (52)

whereε′j is defined in (35) (the term ¯hωµ1r/4s is missing in equation (62) in paper I). The
T -periodic functionsuj,l,n2(t) can be expressed as

uj,l,n2(t) =
( s−1∑
ν=0

v
(ν)
j (t)ei2πνlr/s

)
ei(lr/s+n2)ωt . (53)

At the stroboscopic timestn = nT , we find in particular

uj,l,n2(n) =
( s−1∑
ν=0

v
(ν+n)
j (0)ei2πνlr/s

)
ei(lr/s+n2)2πn (54)

with v(ν)j (nT ) = v(ν+n)j (0). By construction, there are onlys different termsv(0)j , . . . , v
(s−1)
j .
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This does not depend onn2, so that we can drop this index. We will simplify the
notation even more by also dropping—for the moment—the band indexj . Introducing the
abbreviationsu1 = ul(0), v(ν) = v(ν)(0) andσ = ei2πr/s , (54) reduces to

ul =
s−1∑
ν=0

σ νlv(ν) (55)

which represents the quasienergy functions at the stroboscopic time as a linear combination
of the semiclassical flux tube functions. It is of interest that the coefficient matrix doesnot
depend on the band numberj . (As it stands, the transformation (55) from the single flux
tube states to the quasienergy states is not norm conserving; this can be achieved, however,
by multiplication with thes-root of the determinant of the transformation matrix.)

For the simple case of a two-island chainr : s = 1 : 2 we haveσ = −1 and (54) reads(
u0

u1

)
=
(

1 1
1 −1

)(
v(0)

v(1)

)
. (56)

First we observe that the stateu0 is symmetric inv(0) andv(1), whereasu1 is antisymmetric.
Inverting (56)(

v(0)

v(1)

)
= 1

2

(
1 −1
1 1

)(
u0

u1

)
(57)

we see that statesv(ν), which are localized on a single island, can be constructed by
subtracting and adding the quasienergy states. These facts are, of course, well known
from tunnelling in a symmetric double-well potential.

Somewhat more interesting is the case of the 1 : 3 resonance considered numerically in
the preceding sections. The three functionsv(ν) localize on the three islands in the classical
Poincaŕe section in figure 1. Withσ = ei2π/3, the transformation is(

u0

u1

u3

)
=
( 1 1 1

1 σ σ ∗

1 σ ∗ σ

)(
v(0)

v(1)

v(2)

)
. (58)

The stateu0 is symmetric in thev(ν) andu1, u2 transform into each other by interchanging
any pair of thev(ν) up to a factorσ or σ ∗. In terms of theC3 symmetry,u0 is theA-state
and u1, u2 are theE-states (compare also with the discussion of a related semiclassical
quantization of the three-fold restriction rotation in [29, 23]). In fact, the matrix in (58)
agrees with the character table of this group. This holds also for the transformation (55) in
general, which is related to theCs point group.

Inverting (58), we obtain(
v(0)

v(1)

v(2)

)
= − 1

(1− σ)2
(−(1+ σ ∗) σ σ

σ 1 −(1+ σ)
σ −(1+ σ) 1

)(
u0

u1

u2

)
(59)

which can be used to construct quantum states, which localize on a classical flux tube
v(ν) initially and follow the classical orbitv(ν+1), v(ν+2), v(ν+3) = v(ν). In addition, the

wavefunction9 picks up a phase factor e−iθ ′j at each period, whereθ ′j = ε′j T /h̄ is the
quasiangle. Very clearly, the wavepacket will return to its initial island localization at times
3nT .

This is, however, a simplified picture, because it neglects tunnelling. For example, if one
starts a wavepacket constructed from a superposition of the three semiclassical quasienergy
statesl = 0, 1, 2 including the splitting—or, even more ambitious, the correspondingexact
quantum states—the wavefunction will tunnel into the classically forbidden tubes of the
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flux cable. On can gain some insight into this process by means of the narrow band
approximation of the preceding section. Starting a wavepacket localized on islandν in
bandj initially (we still suppress the band index in the equations):

9ν(0) = v(ν) =
∑
l=0,1,2

dνlul (60)

with coefficientsdν,l given in (59), we have at stroboscopic times 3nT

9ν(3nT ) =
∑
l=0,1,2

dνlule
iθ ′l3n (61)

=
∑
ν ′
fνν ′(3n)v

(ν ′). (62)

The time-dependent probability amplitudes

fvν ′(3n) =
∑
l=0,1,2

dνlσ
ν ′le−iθ ′l3n (63)

≈ e−iθ ′3n
∑
l=0,1,2

dνlσ
ν ′le−i1θ ′fl3n (64)

(with fν ′ν(0) = δvν ′ ) show a quasiperiodic tunnelling oscillation between the flux tubes with
frequencies

ωl′l ∼ |f ′l − fl| =
∣∣∣2 sin

π

s

(
l′ + l + µ

2

)
cos

π

s
(l′ − l)

∣∣∣ . (65)

Within the narrow band approximation (48), (49), this oscillation is strictly periodic if the
ratio of two of thefl is rational.

6.2. Degeneracies and suppression of tunnelling

In contrast to the energy eigenvalues for a one-dimensional double-well potential, the
quasienergies can be degenerate. In the present context, this is easily achieved by varying
the value ofh̄, keeping thus the underlying classical dynamics unchanged. In view of
section 3, this can be done, for example, in an experiment by varying the frequencyω.
From (17) we see that the (quasi) Maslov indexν/4 is changed and two of the factorsfl
in (21) or (65) can become degenerate. It might be helpful to illustrate this by the complex
quantities ei2π(l+µ/4)/s , the roots ofzs = eiπµ/2(fl = real z), which are then vertices of a
regular polygon, rotated by an angleπµ/2, which depends on ¯h.

The condition for such a degeneracy of statesl and l′ is
µ

2
= sN − l − l′ N = 1, 2, . . . (66)

i.e. wheneverµ/2 is equal to an integer, pairs of thefl—and hence semiclassical
quasienergiesε′l—are degenerate. Such a degeneracy occurs simultaneously in all bands
j (note that this results from the semiclassical approximation, but isnot a consequence of
the narrow band approximation).

As an example, in figure 7 the characteristic valueaj,l of the Mathieu equation (14) (i.e.
the quasienergies (19) up to a linear transformation) are plotted as a function of the (scaled)
h̄ for the 1 : 3 resonance bands. The curves show a steep increase up to the separatrix value
(which decreases with ¯h because ofasep= 2q = (A/4h̄)2) followed by a widening of the
bands, where the three substates oscillate regularly undergoing repeated degeneracies in all
bands. For even larger values of ¯h the bands approach each other and the substates form a
regular net, where the interband-crossings are small, but, still avoided.
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Figure 7. The characteristic Mathieu valuesaj,l show sequential degeneracies as a function
of the scaled values of ¯h simultaneously in all bands. Also shown in the separatrix value
asep∼ h̄−2.

In case of a degeneracy of substatesl and l′, one can construct a wavefunction, which
is localized on any pair of flux tubes. The tunnelling to the third flux tube is suppressed,
i.e. one of the islands is not populated at times 3nT . Such an anti-localization on tubeν
can be achieved by taking a linear combination of the quasienergy states

9(0) =
∑

ν ′=0,1,2

cν ′uν ′ (67)

with cl′′ = 0 (l and l′ degenerate,l 6= l′′ 6= l′) and

cl′ = −cl for ν = 0 (68)

cl′ = −σcl or cl′ = −σ ∗cl for ν = 1, 2. (69)

An initial state (67)–(69) shows a time variation att = 3nT as

9(3n) =
∑

ν ′=0,1,2

cν ′uν ′e
iθ ′
ν′3n (70)

= cl′ul′ + clul)eiθ ′l3n = 9(0)eiθ ′l3n (71)

i.e. the probability distribution remains constant.

7. Concluding remarks

We have analysed the splitting of the quasienergy states in periodically driven quantum
systems due to tunnelling between classical resonance flux tubes in continuation of previous
work on semiclassical EBK quantization [17, 22]. The resulting semiclassical approximation
provides a simple method for computing the quasienergies and their splittings from a few
classical data by means of phase integrals over the flux tube and the dynamical barrier.
Numerical applications to a driven quartic oscillator demonstrated the applicability of this
approximation, which may be useful for more realistic systems because very small tunnelling
splittings are difficult to compute quantum mechanically. Moreover, the semiclassical
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analysis provides a useful skeleton for the overall organization of the quasienergy spectrum,
which can be labelled by semiclassical quantum numbers.

At the present time, we are not aware of experimental data of quantum tunnelling
splittings between classical flux tubes, which allow a direct quantitative application of the
present analysis. There is, however, a strong experimental effort to control and stabilize
states of atomic or molecular systems in time periodic fields, e.g. strong laser fields. In
particular, it should be possible to populate resonance island states, e.g. by controlling the
time variation of suitable system parameters. We hope that our prediction of tunnelling
between flux tubes will be experimentally observed in the future.

In closing, we would like to point out that there are also some open problems in
the theoretical understanding of these tunnelling processes, because the present analysis is
developed and tested for a system, which is almost regular. It should be of some interest
to study the influence of increasing chaoticity on the splittings for tunnelling transitions
through the chaotic separatrix layer. Work along these lines is in progress.
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