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Abstract. For periodically driven systems, quantum tunnelling between classical resonant
stability islands in phase space separated by invariant KAM curves or chaotic regions manifests
itself by oscillatory motion of wavepackets centred on such an island, by mulitplet splittings of
the quasienergy spectrum, and by phase space localization of the quasienergy states on symmetry-
related flux tubes. Qualitatively different types of classical resonant island formation—due to
discrete symmetries of the system—and their quantum implications are analysed by a (uniform)
semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic
oscillator.

1. Introduction

The generic phase space structures of classical Hamiltonian systems show an intricate
mixture of regular motion on invariant tori and chaotic space filling dynamics. The quantum
manifestation of the Poincarscenario in the statistics of energy spectra, fluctuation of
expectation values and wavepacket dynamics is still debated today. An important aspect in
this classical-quantum correspondence is the tunnelling dynamics between classical regular
regions in phase space divided by separatrices or chaotic layers. Whereas the tunnelling
phenomenon is easily understood semiclassically for tunnelling through potential barriers,
the general case afynamical tunnelling[1], for example, tunnelling through a classically
chaotic region, is far from being fully explored.

The present paper addresses several aspects of a semiclassical analysis of dynamical
tunnelling. For simplicity, we will confine our discussion to the case of one-dimensional
time-periodic systems, which model, for example, atomic or molecular dynamics in laser
fields or driven mesoscopic systems. Such ‘one and a half’-dimensional systems show
most of the relevant dynamics and allow, on the other hand, extensive numerical studies
in the semiclassical regime of smdll “A considerable number of previous studies on
dynamical tunnelling have been carried out for systems of this type, as for instance the
studies of a driven double-well oscillator by Lin and Ballentine [2, 3], Peres [4], Plata and
Gomez Llorente [5], and &hggi and co-workers [6—10], the analysis of a generalized kicked
rotator [11, 12] or a harmonically driven planar rotor [13] as well as the kicked Harper model
[14, 15]. Very recently, the level splitting distribution in chaos-assisted tunnelling two space
dimensions has been studied by Leyvraz and Ullmo [16].
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In section 2, we give a brief description of the classical dynamics of the model
system. Based on the semiclassical pendulum quantization of KAM resonances derived
in a preceding paper [17]—in the following denoted as paper I—a semiclassical analysis
of the quasienergy quantization of resonances is presented in section 4. The tunnelling
splitting of the quasienergies is discussed in section 5. In particular the structure of the
guasienergy spectra, the tunnelling integral over the classical forbidden region and the
scaling withs are discussed, as well as the differences for the cases of tunnelling between
classically connected or disconnected flux tubes. In section 6, the semiclassical dynamics
of wavepacket tunnelling between the stability regions is studied.

2. Classical division of phase space

In the present study, we choose as an example the linearly forced anharmonic oscillator

2

b
H(p,x,t) = % + Zx4 — Ax coqwt) Q)

with unitsm = b = w = 1, which is time-periodic with period’ = 27 /w.

For A = 0, the system reduces to the time-independent (and therefore integrable) quartic
oscillator, where a phase space point moves on the energyryellk) = E with frequency
w1, Which increases witltE. For small values of the force amplitude the oscillations in
resonance with the driving forcey; : @ = r : s with integersr and s, are typically
distorted, and a chain of elliptic and hyperbolic fixed points appears. For increasing values
of A, the resonance zones grow and the separatrix dividing the resonance motion from the
outer non-resonant oscillation develops into a chaotic layer. Finally, the resonance zones
overlap and global chaos sets in. For the param?et:erg%\/?% ~ 0.014 2556 (see [18] for
the motivation of this special choice) the phase space is predominantly filled by regular
motion with isolated resonances, the largest ones,;atw =2:4,1:3,2:8,1:5and

1 : 7 as shown in the stroboscopic Poircaection at times = nT,n =0,1,2,..., in
figure 1.
The Hamiltonian (1) is invariant under the discrete symmetry
(p,x,t) > (£p,—x,t+T/2) (2)

which appears also in the driven double-well potential (see, e.g. [3,4]). The dynamical
symmetry (2) has important consequences for the phase space organization of the resonant
motion. There are two possibilities.

(i) The phase space tube surrounding the periodic orbit at the centre of the resonance
is invariant under the symmetry (2). In this case, a Polcaction of the flux tube at
t=(m+ %)T will be a mirror image with respect to = 0 (and p = 0) of the Poinca
section att = nT as, for example, for the ‘odd’ resonances 1:3 and 1:5.

(i) There are groups of disconnected resonance tubes, each of which violates the
symmetry and transforms into another member of this group under the symmetry operation
(2). This is a general consequence of the symmetry of the time transtationr + T/2:
it can still be shown that every even resonance chain breaks up into two disconnected
ones, where neighbouring islands belong to different chains. A P&rsmstion at time
t=(n+ %)T will interchange these pairs. In the present case, this is observed for the even
2:4 and 2 : 8 resonance.

The topology of the cable of intertwined flux tubes (m, p, ) space can be very
complicated. Various graphical illustrations of such a cable can be found in the literature
(see, e.g. [19, figures 8.3-3] for an outstanding example). Here we will confine ourselves
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Figure 1. Stroboscopic Poincarsection for a weakly driven quartic oscillator showing resonance

regions forwy/w = 3, 3, 1, .... The period-two motion appears as two disconnected pairs of

islands.
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Figure 2. Two pairs of resonant flux tubes surrounding an elliptic orbit of period two. Two
different trajectories are plotted as a function of timmodulo7 = 2r.

to the group of flux tubes of single isolated resonances, as illustrated in papér,lznt)
space. Figure 2 shows as an example the projection of such a group of flux tubes on
the (x, 7) plane for the 2 : 4 resonance. As discussed in (ii) above, we see two pairs of
disconnected tubes. Quantum mechanically, these four segments of tubes will lead to four
(almost degenerate) quasienergy states, as discussed in detail in the following sections.
Table 1 lists the important parameters of the classical resonance dynamics, the area
A_ enclosed by the largest invariant non-resonant ctelew the resonance, the areia
enclosed by the smallest invariant non-resonant cabayvethe resonance and the resonance
areaA = A, — A_. The average of the areas, and A_ determines approximately the
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Table 1. Parameters of some classieal s resonances

ris  A- Ay A woT S;’O

1:1 3.09780 5.09007 199186 0.06448 1.06692
2:4 048528 052851 0.04323 0.01426 0.12621
1:3 0.1109 0.19211 0.08115 0.07219 0.03878
1:5 0.02837 0.03610 0.00754 0.03181 0.00649
2:5 0.86780 0.88354 0.01524 0.00694 0.65524
1:7 0.01112 0.01216 0.00088 0.01069 0.00064
2:7 031598 0.32270 0.00660 0.00813 0.23689
1:9 0.00534 0.00553 0.00000 0.00314 0.00000

average action-variable = ¢ p dx/2n of the resonance zone

1
Iip= T(A+ +A). 3)
T

In addition, the eigenvalues of the stability matriX«” at the stable fixed point are needed
in the following, as well as the action integrgr0 along thes-periodic orbit at the fixed
point.

In the following, we will analyse in detail the dynamics of the 1 : 3 resonance centred at
the periodic orbit started at, for exampig, x) = (0, 0.385) and the 2 : 4 resonances, i.e. the
symmetry-related pair of two-periodic orbits started at, for examgieyx) = (0, —0.600)
or (0.246, —0.027), respectively (compare with figure 2).

3. Quantum quasienergies and scaling properties

The quantum dynamics of a tim@')-periodic system can be conveniently described in
terms of the quasienergy (Floquet) states

W, (1) = e 7 u, (1) With u,(t + T) = u, (1) ()
which closely resemble the eigenstates of time-independent systems. The quasienergies
are only defined by (4) up to integer multiplesiaé(w = 27/ T). It is therefore convenient
to define the quasiangles

Opu = &,T/h. (5)

For Hamilitonian (1), the quasienergy spectrum is a pure point spectrum [20].
The time-periodic Scliddinger equation

Y 12 8%y b,
ih—=—-———- —x* — Ax coSwt 6
or = 2max2 T \a® TAreOsen v ©
can be simplified by scaling the variables and parameters as
b1/2 bl/Z _ . b
!’ ! __ !’ 7T
' = wt X _xfml/z A= A7w3m3/2 h _ha)3m2 ©)
which transforms (6) into
Y 72 9%y 1
i =—— " “x*— Nxcost | . 8
ot 2 ax2 T \g* M v ®)
The quasienergies scale as

, b
€ =8 i ©)
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and the quasiangles are, of course, independent of the scaling.

Here we will use the scaled quantities (dropping the prime in the following sections).
In the classical limit, the dynamics depends only on a single paramétamnd the (scaled)
Planck constanf;’, of the quantum dynamics can be controlled by changing the frequency,
w.

4. Pendulum quantization and semiclassical analysis

Semiclassical EBK quantization techniques for the quasienergy states for time-periodic
systems have been developed and studied recently [21,22]. They allow a quantization in
two independent steps, in contrast to related methods for general two-dimensional systems
(see, e.g. [23, ch 7.3] and references therein).

For a non-resonant motion, the first quantization step determines the classical torus with
guantized action

1 _

Ilz—fpdx=h<n1+ﬂ) n=01 ... (10)
2r [, 4

where y; is a closed path following the intersection of the torus with the stroboscopic

Poincaé section andu; is the Maslov index of the path (e.g.; = 2 for a liberational

motion with two turning points). The subsequent step simply determines the quasienergies

Mn1 -
Enyny = W1 (nl + Z) - <L> +ha)l’l2 (11)
in terms of the torus average or, equivalently, the long-time average of the Lagrangian
) 1 kT
(L) = kILmoo ﬁ/o L(x, x, t)dr. (12)

The frequencyw; in (11) is the angular frequency corresponding to the actjorit should
be noted that the quantum mechanical quasienergies are only determined up to multiples of
hw, and the termhwn; in (11) is irrelevant.

Due to the phase space organization in the one-dimensional case, the quantization
condition (10), which labels the torus supporting the quasienergy statalso counts
the number of states supported by the phase space reg@osedy the curvey;, which
is given by

Lot
R

We therefore expect (for; = 2) Ny = A /h + % states supported by the phase space
region inside the quantized invariant torus above the resonance f3tate N, — 1) and
N_=A_/h +% states below the resonance region, i.e. the quasienergy state with quantum
numbern; = N_ — 1 is the highest state below. Thé. — N_ = A/h resonance states
must be labelled in a different manner. For the value 0.0005 we haveV = A/h ~ 26

states localized on the 1 : 3 resonance islands chairNasdA/h ~ 14 states on the four

2 : 4 resonance islands.

In comparison with exact results, the semiclassical quantization of non-resonant tori,
i.e. tori outside the resonance zones, proved to yield very good results as demonstrated
in paper I. Even in cases close to resonances, where the quantizing tori are already
destroyed and chaotic layers exist, interpolation techniques yield good approximations to the
guasienergies, as long as the resonances zones are small compared with Planck’s constant
[22]. In paper |, the semiclassical quantization of the KAM resonances, and in particular

1
n+1= Z(area enclosed by;) + (13)
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the case of large resonances supporting several quantum states, has been addressed in more
detail. At resonance, i.e. for a rational frequency ratio. w = r : s(r, s € N, the relevant
dynamics is described by a pendulum (see [24] for a related pendulum approximation applied

to periodically driven hydrogen atoms). The wavefunctiabg&p), for this pendulum satisfy

the Mathieu differential equation

2
(dz +a—2q COS(s<p)> P(p) =0 (24)
de

whereg is the pendulum angle.

In the classical limit, the pendulum motion can execute librational {fos 2¢) or
rotational (fora < 2¢) motion in different regions in phase space divided by the separatrix
(a = 29). The area enclosed by the separatrix ig/46 which must be mapped onto the
classical resonance aref divided by 7 (compare with section 2). This determines the
Mathieu parameter

g = (A/167)2. (15)
The boundary conditions for the solutions of (14) are

q>1<<p+2”)=exp(i2”(l+“))q>,(q)) 1=0,...,s—1  (16)
S S 4

where the ‘Maslov indexy is determined by

7 ur 1
== —-ZLo|m 17
4 ( 4 h 1’0) ods (17)

(note the wrong sign in equation (48) of paper I). Hekg, is the location of the resonance,
which is given by the average action (3). It should be noted that the Maslov mdexeal
valued, i.e.not equal to an integer.

As well known from the theory of the Mathieu equation, the boundary condition (16)
determines (for any value &f a characteristic value af inside the stability bands numbered

by j =0,1,..., i.e. one obtains the characteristic valugg, which finally map onto the
guasienergies by
— r
it = )+ Teo (2 + ;l) (18)
with
, 1 hawg —urr
g, = —ﬁSgo + Tﬂ(aj,, +29) + ha)z. (19)

The quasienergies; ; ,, taken moduloiw/s agree with thes] ;.

Let us recall from paper | tha(, is the classical action along theperiodic orbit centred
at the elliptic fixed point andy is the characteristic frequency for the motion close to the
fixed point determined by the eigenvalues of the stability matrix. As discussed in detail
in paper I, an expression equivalent to (19) can be derived using data from the hyperbolic
fixed points.

In the following, the structural organization of the semiclassical resonance spectrum is
analysed. Quite conveniently, we will use the solid-state term ‘band’ to describe a set of
quasidegenerate levels (modue (n; + r/s)) belonging to symmetry-related flux tubes.

In paper |, a detailed comparison of exact quantum results demonstrated the quality of the
semiclassical pendulum quantization for resonances as well as the semiclassical assignment
of quantum numbers, which reveals the underlying structure of the spectrum. In particular,
the quasienergies of states localizing on :as resonance appear asnultiplets, which are
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almost degenerate if they are taken modulg's. The presented uniform method provided
already quasienergy splittings due to tunnelling. The characteristic values of the Mathieu
equation (14) were determined numerically in paper I.

It is, however, more informative in the present context of a semiclassical approximation
to treat also the quantization of the Mathieu equation semiclassically. A uniform semi-
classical solution of the one-dimensional time-periodic 8dimger equation is known and
explored in particular in the Mathieu case. Here we follow the treatment by Catrair
[25]. The semiclassical quantization condition for the solution of the Mathieu equation (14)
with boundary condition (16) reads

cosa — ¢) = [1 + exp(—2re)] Y2 f ¢=0,...,s—1 (20)
where the factors
27 2
fi= cosT (l + Z> (22)

satisfy the sum rul@_ f; = 0. Here,
v= [ Ja=2gc0850)ds (22)
is the action integr;[ over the well and
we=z [ |Va—2qc0850)] o (23)
0

is the tunnelling integral over the forbidden region (the ‘barrier’). The boundaries of
integration are the zeros of the integrand (the ‘classical turning points’), which are real
valued fora < 2¢g and complex fow > 2¢. The sign in (23) is chosen so thats negative
below and positive above the barrierat 24.

Because of the phase correction term

¢(e) =e+argl (5 +i€) —elnje| = —¢p(—e) (24)

the semiclassical formula is valid uniformly below and above the barrier. For the Mathieu
case, the phase integrals can be expressed by

8 [ E(k) — k%K (k) a<2g
— /z° 25
* ﬁs [kE(k—l) a>2q (29)
8| E(K) —k*K(K') a<2q
me=Va, { K(K1/6b) —EQK1/6) a>2g 29

in terms of elliptic integrals B) and K(k) with k? = (a+2q)/4q andk’?> = 1—k? following
the notation in [26]. At the separatrix= 2¢ we have
8
N
Equation (20) can be rewritten [25] as
Ji
1- fl2 + exp(—2me)

where j = 0,1,... counts the consecutive multiplicities of the arctan function and
determines the ‘band number’.

The numerical solution of (20) or (28) determines the uniform semiclassical
characteristic values;; of the Mathieu equation for boundary condition (16). Figure 3

(28)

a—¢=mn(j+3) — (-1 arctan
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Figure 3. Semiclassical quantization condition (20) as a function of the Mathieu parameter
for a period thregs = 3) chain in figure 1(h = 0.0005. The three branches of the right-hand
side differ by the factorf;, I =0, 1, 2.

illustrates this for the case of a three-island ch@in= 3) and parametey = 1017
(adapted to the period-three chain of resonances shown in figure 1), Maslov indek
andwp = 0.07129. Both sides of the equality (20) are shown separately as a function of
a (note that the right-hand side leads to three brané¢hesO, 1, 2 because of the factor

f1). In figure 3, we havef, ~ 0, fo = 0.867, andf; = —0.867 (note that for different
parameters these values are different, in particular we havet 0 and fo # —f1 as
demonstrated numerically below). The right-hand side of (20) changes continuously from
zero to a plateauf;, with a steep increase in the vicinity of= 24 at the separatrix, where

the tunnelling integral is zero. The intersections of the curves determine the characteristic
valuesa; ;. For the eight bandg =0, 1, ...7 inside the separatrix atep= 29 ~ 203, the
splittings of thea-values are small.

The numerical results for the quasiangles for the 1 : 3 resonance states are listed
in table 2, where the quasianglés are taken modulo ;2/3. The ¢’ appear as almost
degenerate triples, which are clearly organized in bands numbergd Ayirst assignment
of the semiclassical quantum numbérs- 0, 1, 2 is supported by the shiftgl/3 of the
0-triple before the modulo operation. Also shown in the table are the present semiclassical
guasienergies (column scl(2)) obtained from (19), which are in very good agreement with the
more elaborate ones given in paper | (listed in column scl(1)). (Note thdtnbenbering
in paper | differs from the present one.) Furthermore, one observes that the triple of
guasiangles fof = 0, 1, 2 changes its order for odd or even values of the band number
j, which is easily explained semiclassically because of the alternating sign of the slope
of the cos function in figure 3. Interestingly, the semiclassical quasienergy splittings yield
good approximations to the exact splittings even for states localizing definitely outside the
resonance, i.ej > 8. There the underlying pendulum approximation loses its legitimation,
and the absolute values of the semiclassical quasienergies increasingly deviate from quantum
values. The noticeable deviation between the semiclassical and the quantum values for the
extremely small splittings in the lowest bands, however, are due to the limited accuracy in
the quantum computations.
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Table 2. Semiclassical and exact quantum quasian@p& s]’.lT/iT (modulo 2r/3) for the 1 : 3
resonance states. The quantum numiggrs) are assigned semiclassically. The exact quantum
results are compared with the semiclassical approximation scl(2) and with those obtained from
the more elaborate method in paper | (scl(1)).

Quasiangles Energy splittings

~

Quantum  scl(1) scl(2) Quantum scl(1) scl(2)

0.5467 0.5458 0.5472
0.5467 0.5458 0.5472 .49e—09 13le—11 168e—11
0.5467 0.5458 0.5472
0.9816 0.9818 0.9832
0.9816 0.9818 0.9832 .&e—09 128e—09 124e-09
0.9816 0.9818 0.9832
1.3969 1.3993 1.4007
1.3969 1.3993 1.4007 .55e—08 579%e—08 124e—08
1.3969 1.3993  1.4007
1.7913 1.7967 1.7981
1.7913 1.7967 1.7981 .30e—06 16le—06 159%— 06
1.7913 1.7967 1.7981
0.0683 0.0776  0.0790
0.0683 0.0776 0.0790 .56e—05 307e—05 304e-05
0.0683 0.0776  0.0790
0.4144 0.4284 0.4298
0.4140 0.4280 0.4294 .ZDe— 04 416e—04 413e—-04
0.4144 0.4282  0.4296
0.7290 0.7475 0.7490
0.7325 0.7515 0.7530 .52e—03 40le—03 399e-03
0.7296 0.7494  0.7509
1.0194 1.0460 1.0475
0.9954 1.0203 1.0219 .3We—-02 257e—02 256e— 02
1.0099 1.0321 1.0337
1.1995 1.2279 1.2296
1.2836 13162 1.3177 .ABle—-02 883e—02 88le—02
1.2333 1.2639 1.2656
1.5619 15822 1.5837
1.3904 1.4194 14210 .7Re—01 163e—01 163e—01
1.4477 14941 1.4956

O© O OWWOWWOONN~NOODOODOODUUTUAPRADMDMWWWNNNRREPRLOOO| -

NPFRPONRFPFONPFPONRPFPONPFPONPFPONPEFPONRPONPEFPONPONREFPONPFPONREFONEO

10 1.1674 1.6802 1.6816
10 1.8068 18903 1.8916 .8Be—01 210e—01 210e-01
10 1.7744 1.7820 1.7834
11 0.1430 0.1497  0.1509
11 2.0121 2.0032 2.0045 .8fe+00 198e+00 198e+ 00
11 2.0144 0.0272  0.0285
12 0.1796 0.2774 0.2786
12 0.4647 0.5454 0.5466 .85e—01 268e—01 268e—01
12 0.3803 0.4089 0.4101
13 0.8951 0.9790 0.9801
13 0.6312 0.6855 0.6867 .G%e—01 293e—01 293e-01
13 0.7726 0.8305 0.8316

Figure 4 shows the quasianglésfor the 1 : 3 resonance states taken modutg 2
as a function of the band numbgr(compare with figure 6 of paper I). The quasiangles
(modulo 2r/3) appear as almost degenerate triples, where the splitting increaseg, agh
discussed in detail in the following section. For the average vlue 3, fi/s = 0 we
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Figure 4. Quaisangle®’ (modulo 2r/3) for the 1 : 3 resonance states as a function of the band
number; (integer multiples of 2/3 are added so that the data increase wjth The almost
degenerate triples far= (O), 1(0), and 2+) changes its order for odd and evgnThe broken
and dotted curves show the variation of the semiclassical band centre and band boundaries.

have (compare with (28))
a—¢p=n(j+3) (29)
which determines the band centigas a function ofj. More directly, the inverse function
is explicitly given as
-1 1
j=_—la=9¢)—3 (30)
T 2

wherea and¢ are given in (22) and (24) as a function of the parametawhich can be
determined from (19):

25./q S;o ur
9/ = 0/ — — 277:7 — . 31
a®) woT ( + sh 4s 24 (31)

Therefore, (30) provides the typical dependence of the band centre as a function of the
quasiangled’ valid uniformaly across the separatrix. Similarly, the semiclassical band
edges can be determined from (28) using the extreme fiaset+1. This leads to

j+ = j £ arctarexp(re)) (32)

which increases witke from zero below the separatrix tp+ 2, i.e. the j band width
approaches unity.

Both, the band centre and the upper and lower band edges are also shown in figure 4
as broken or dotted curves, respectively. We observe a marked change of the slope close
to the separatrix band number estimated as

Jsep=A/sh — 5 (33)

which yields jsep = 8.06 in agreement with figure 4. For larger band numbers, the triple
of exact quantum values follow the semiclassical boundaries. Finally, it should be noted
that well below the barrierm¢ is very large in the semiclassical limit and the tunnelling
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contribution in (28) can be neglectég = 0) and we recover the primitive semiclassical
guantization (see paper 1)

a=m(j+3) (34)

in agreement, of course, with the band centre (29)¢for 0. In this limit, ¢, in (19) is
l-independent
51
[P _ +
g xE = T —Sp + f(aj +2q9) + ha)Tg (35)
Even more drastically, the elliptic functions in (26) can be expanded to first ord€rand
one obtains

-1 1 nar
e S (7 = ) + R %)

i.e. a contribution from the central periodic orbit and an additive harmonic oscillator ladder
from the harmonically approximated pendulum. Formula (36) can also be obtained from
the torus quantization by expanding expression (11) to the first order in the agtiwhich
agrees with the narrow approximation by Bensch and Thylwe [27] for the case of a single
flux tube.

The localization properties of states related to the 1 : 3 resonance are most clearly
detected in the quantum phase space densities, as for instance the Husimi density

o(p, %) = (p, x|W)? (37)
which is simply the projection on minimum uncertainty states localized at gpint) in
phase space:

1/4 2 i
s s(y —x)
=|—= — =t = 38
(Ip, x) (nh> eXP( o T hpy) (38)

Figure 5 shows the Husimi distribution for a number of selected states computed from the
exact quantum states. As in paper |, the exact quasienergy states are ordered according to
increasing expectation valuQs|1§(r = 0)|a). Here we use an index;, to number the
states in this way. In addition, the semiclassically assigned quantum nurfybérsare
given. As expected, states with< 8 localize on the stability islands, as shown for the
lowest states (the resonance ‘ground statgsZ 0 and the excited states = 3. With
increasingj, the Husimi distributions show an increasing number of maxima, but—for low
j—the distributions for the threk substates are almost identical. This changes, however,
the vicinity of the separatrix. The three ‘separatrix states’ wite 8 show a pronounced
localization in the vicinity of the hyperbolic fixed points, where two maxima are observed
close to these unstable fixed points. Statg$) = (8, 0) and (8, 1) localize predominantly
on the outer, whereas statg /) = (8, 2) localizes on the inner branch of the separatrix. The
states in the next higher bangd,= 9, also populate the hyperbolic fixed points, however,
clearly outside the classical separatrix (statel) = (9, 2) is shown as an example) and,
consequently, these states can be quantized also by primitive EBK torus quantization on a
torus outside the separatrix (see paper ).

As an example of the organization of quasienergies for an even resonance, the
r @ s = 2 : 4 resonance will be discussed in some detail. As already pointed out in
section 2, an even resonance breaks up to two disconnected subchains, i.e. we observe a
chain of four two-periodic islands in the classical Poigcaection in figure 1, where the
pairs of opposite islands are connected by a flux tube. As shown in figure 2, the two pairs
of disconnected flux tubes interchange their position each half pefil, Therefore, after
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Figure 5. Quantum Husimi phase space distributions for a number of selected states with
semiclassically assigned quantum numbgt) related to the 1 : 3 resonance. States with 8
localize on the stability islands, as shown for the lowest states (the resonance ‘ground state’)
j = 0 and the excited states= 3. The stateg = 8 localize on the separatrix and= 9 in

the region outside the separatrix.

one periodT’, each pair of flux tubes is at its starting position; however, the position of the
flux tubes within such a pair is restored only aftér.2

The total resonance area /& = 0.04323 and we expect 14 states localized inside
the resonance islands. The semiclassical parameieitherefore equal to 29.187 and the
separatrix band (33) is expected at, ~ 2.9. Furthermore, we have a Maslov index
u = 12.608. A semiclassical quantization of such an island chain has been derived in
section 6 of paper I, which leads to the simple semiclassical quantization of each of the
two-periodic flux tubes as discussed above. This yields two sets of quasiangles, which are
degenerate modulon?s = .
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Table 3. Semiclassical (first line, scl) and exact quantum (second line, gm) quasiangles
Jf, = sj_’._lT/E (mo_dulo _2r/2) for the 2 : 4 resonance states. The quantum numbgis
are assigned semiclassically.

j [=0 =1 1=2 =3

0 scl 1.0974 1.0975 1.0975 1.0975
gm 1.0958 1.0958 1.0958 1.0958
1 scl 12236 1.2240 1.2234 1.2231
gm 1.2218 1.2221 1.2216 1.2212
2 scl 13298 1.3266 1.3321 1.3363
gm 1.3281 1.3244 1.3296 1.3344
3 scl 14189 14411 14101 1.3986
gm 1.4141 1.4403 1.4099 1.3959
4 scl 14959 14658 15119 1.5517
gm 1.4984 1.4616 15041 1.5554
5 'scl 16371 1.6877 1.6161 1.5707
gm 1.6258 1.6953 1.6218 1.5615

H T T 1
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A,D'.' L
//R”
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i L i i i i i
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Figure 6. Quasiangle®’ (modulo 2r/2) for the 2 : 4 resonance states as a function of the band
numberj. The almost degenerate pair fbe= 0,2 (O, x) and!/ = 1,3 (d, +) change their
order for odd and evep. The broken and dotted curves show the variation of the semiclassical
band centre and band boundaries.

The semiclassical and exact results are compared in table 3 and figure 6, where also the
semiclassical band centre and band edges are shown. The overall trend of the quasienergy
spectrum is reproduced semiclassically, in particular the approximate degeneracy (modulo
2rt/s), the formation of four-tuples in separate bands, the variation of the band centre as
well as the increase of the band width. The levels inside a band are split into two pairs
(l = 0,2 and! = 1, 3) with roughly the same quasienergy differences. The position of these
pairs inside a band interchange with odd/even band number
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5. Tunnelling splittings of the quasienergies

Let us now look at the tunnelling splittings of the quasienergies for narrow bands well below
the barrier, i.e. for parameters of the Mathieu equation (14) in the reglan< a < 2g.
Following [25], the splittings of the characteristic valuesof the Mathieu equation are
approximated by expanding—¢ in the neighbourhood of the band centre (29). The half
width of the band; is approximately given by

-1
A = 409 - 2 e (39)
with
da—¢) |t _sm/q (40)
de | Kk

ande; = €(a;) (note that-1 < f; < 1). Using again the expansions for the elliptic integrals
[26], the phase integral over the well and the tunnelling integral are approximately given
by

2
a~ T Jgk? (41)
N
8 k? 4 k?
&~ - 1——In{-)—— 42
i sﬁ[ 2”<k> 4} 2
and the splitting of the-values in bandj can be written (using (34)) as
2 i+1-8./q 2 it+3
S oAy ETET G
SRR G V) )
The individual characteristic values inside bahdre then given by
aj;=a; — (=D/A; fi (44)

with an average value af;.

Semiclassically, thei-dependence of the tunnelling splitting is of interest. With
Jq = A/16h in (43), the combined polynomial-exponential dependence can be written
as

Aj ~ R+ g=8/h (45)

with § = A/2s. The approximate quasienergies in bgietaken moduldhw/s—given in
(19) are
g, ~ &l + Ag) fi (46)

wheree; is defined in (35), and
/ T 8]7 j
Agj = —Tiwo— (=17 A,;. (47)
The splitting of the quasiangles (5)—modula 2—can then be written equivalently as
6, =6 + A6, f; (48)
with

/ 8]/7 j
AG) = —aoT ~ (=174, (49)
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which shows—up to the additional factor bf—the samei-scaling as (45):
(AG); ~ R~ o/, (50)

Two different origins of the splittings should be distinguished.
(i) The tunnelling integralx€;, resulting from a classically forbidden transition between
the classical stability islands determines the overall splitting of the band, i.e. the band width.
(i) The quasienergies of individual states of thuple in each band are split by the
termshwrl/s(I =0, ..., s — 1), which disappear when taken modiie/s, as well as by
the f;-terms (21). These splittings arise from the matching conditions for the phases and
are closely related to the symmetry properties of the states.

Semiclassical tunnelling through classically forbidden regions in phase space for
two-dimensional time-independent systems has been discussed by Wilkinson [28], who
conjectured a scaling of the energy splittings as

AE — =325/ (51)

where S is a constant, in agreement with the scaling (45) for the lowest band. This
scaling law is, however, based on the existence of the classical tori, i.e. on the approximate
integrability of the system. Deviations from this simple scaling law for strongly distorted
systems are likely, where the classical separatrix develops into a chaotic layer (see [14] for
a recent study).

6. Wavefunctions and wavepacket dynamics

In this section we will describe the semiclassical wavefunction supported by a group of flux
tubes in more detail, as well as the symmetry and localization properties and the suppression
of tunnelling.

6.1. Tunnelling between flux tubes

The semiclassical (EBK) quantization of quasienergy states [17,21,22] provides
semiclassical wavefunctions(z), which are supported by the singk-periodic flux
tube following the periodic orbit at its centre. Defining segmarjt’é(t) = v;(t +vT),
v=0,...,5s — 1, of lengthT, we can construct a-fold centre of flux tubes in the period
0 <t < T (see figure 2 in paper | for an illustration).

Neglecting tunnelling, it was shown in paper | that the primitive semiclassical
guasienergy states for the island chain can be built up from this flux cable. The quasienergy
wavefunction is given by

W1y (1) = €7t Py (1)~ @&y (1) (52)

whereg is defined in (35) (the terriwuyr/4s is missing in equation (62) in paper ). The
T-periodic functionsy;; ,, () can be expressed as
s—1

Wty (l) _ < Z UJ(U) (t)eiZmJlr/s) ei(lr/s+n2)a)t ) (53)
v=0
At the stroboscopic times, = nT, we find in particular
s—1
W1y (n) — ( Z U;-v+n) (O)einrvlr/s) ei(lr/s+n2)27m (54)
v=0

with v;”)(nT) = v}”*”) (0). By construction, there are onlydifferent terma);o), s vf’l).
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This does not depend oy, so that we can drop this index. We will simplify the
notation even more by also dropping—for the moment—the band iridéstroducing the
abbreviations:; = u;(0), v = v®(0) ando = €27'/%, (54) reduces to

s—1
u = Za”lv(”) (55)
v=0

which represents the quasienergy functions at the stroboscopic time as a linear combination
of the semiclassical flux tube functions. It is of interest that the coefficient matrix ttes
depend on the band numbgr (As it stands, the transformation (55) from the single flux
tube states to the quasienergy states is not norm conserving; this can be achieved, however,
by multiplication with thes-root of the determinant of the transformation matrix.)

For the simple case of a two-island chains = 1 : 2 we haves = —1 and (54) reads

u 1 1 v©@
()=( 2) () 5%

First we observe that the statg is symmetric inv©@ andv®, whereas; is antisymmetric.
Inverting (56)

()42 )

we see that states™, which are localized on a single island, can be constructed by
subtracting and adding the quasienergy states. These facts are, of course, well known
from tunnelling in a symmetric double-well potential.

Somewhat more interesting is the case of the 1 : 3 resonance considered numerically in
the preceding sections. The three functiofi$ localize on the three islands in the classical
Poincaé section in figure 1. Witlr = €27/3, the transformation is

ug 1 1 1 v©@
(u1>=<1 o a*)(v(l)). (58)
us 1 o o v®@

The stataug is symmetric in thev™ andus, u, transform into each other by interchanging
any pair of thev™ up to a factoro or o*. In terms of theCs symmetry,u is the A-state
and ui, up are the E-states (compare also with the discussion of a related semiclassical
guantization of the three-fold restriction rotation in [29,23]). In fact, the matrix in (58)
agrees with the character table of this group. This holds also for the transformation (55) in
general, which is related to th& point group.

Inverting (58), we obtain

v© 1 —(1+0%) o o uo
(v(1)> =_12< o 1 —(1+0)> (ul) (59)
e (1-09) . —(1+0) 1 Uz

which can be used to construct quantum states, which localize on a classical flux tube
v initially and follow the classical orbiv™*, v+, v+3 = 4 In addition, the
wavefunction picks up a phase factor & at each period, wherg/ = ¢/ T/f is the
guasiangle. Very clearly, the wavepacket will return to its initial island localization at times
3nT.

This is, however, a simplified picture, because it neglects tunnelling. For example, if one
starts a wavepacket constructed from a superposition of the three semiclassical quasienergy
stated = 0, 1, 2 including the splitting—or, even more ambitious, the correspondirgct
guantum states—the wavefunction will tunnel into the classically forbidden tubes of the
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flux cable. On can gain some insight into this process by means of the narrow band
approximation of the preceding section. Starting a wavepacket localized on island
band; initially (we still suppress the band index in the equations):

W0 =0V = ) duw (60)
1=0,1,2
with coefficientsd,; given in (59), we have at stroboscopic timesr3
W,@nT) = Y dyu, e (61)
1=0,1,2
= Z fvv’ (3n)v(vl)~ (62)
The time-dependent probability amplitudes
for @)=Y dyo"le (63)
1=0,1,2
A e—i?3n Z dvlau’le—iAé"fISn (64)
1=0,1,2

(with £,,,(0) = §,,/) show a quasiperiodic tunnelling oscillation between the flux tubes with
frequencies

o ~ | — fil = )2 sing (l/ e %) cosg(l/ —nl. (65)

Within the narrow band approximation (48), (49), this oscillation is strictly periodic if the
ratio of two of the f; is rational.

6.2. Degeneracies and suppression of tunnelling

In contrast to the energy eigenvalues for a one-dimensional double-well potential, the
guasienergies can be degenerate. In the present context, this is easily achieved by varying
the value of#, keeping thus the underlying classical dynamics unchanged. In view of
section 3, this can be done, for example, in an experiment by varying the frequency
From (17) we see that the (quasi) Maslov indeX is changed and two of the factofs
in (21) or (65) can become degenerate. It might be helpful to illustrate this by the complex
quantities 87¢+#/9/5 the roots of;* = €7/2(f; = realz), which are then vertices of a
regular polygon, rotated by an angte./2, which depends oh.™

The condition for such a degeneracy of statemd!’ is

%:sN—l—l’ N=12... (66)

i.e. wheneveru/2 is equal to an integer, pairs of thg—and hence semiclassical
quasienergies,—are degenerate. Such a degeneracy occurs simultaneously in all bands
j (note that this results from the semiclassical approximation, bobdisa consequence of
the narrow band approximation).

As an example, in figure 7 the characteristic vatygof the Mathieu equation (14) (i.e.
the quasienergies (19) up to a linear transformation) are plotted as a function of the (scaled)
h for the 1 : 3 resonance bands. The curves show a steep increase up to the separatrix value
(which decreases with because ofisep = 29 = (A/4h)?) followed by a widening of the
bands, where the three substates oscillate regularly undergoing repeated degeneracies in all
bands. For even larger valuesi/othe bands approach each other and the substates form a
regular net, where the interband-crossings are small, but, still avoided.
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Figure 7. The characteristic Mathieu valueg; show sequential degeneracies as a function
of the scaled values dfi simultaneously in all bands. Also shown in the separatrix value

asep™ 2.

In case of a degeneracy of substatesd!’, one can construct a wavefunction, which
is localized on any pair of flux tubes. The tunnelling to the third flux tube is suppressed,
i.e. one of the islands is not populated at timeg'3 Such an anti-localization on tuhe
can be achieved by taking a linear combination of the quasienergy states

vO) = Y cpuy (67)
v=0,1,2
with ¢;» = 0 ( and!’ degenerate], # 1" £ 1') and
= —q forv=0 (68)
cp = —o¢y or cp = —0o*¢ forv=12. (69)

An initial state (67)—(69) shows a time variationtat 3nT as

W(3n) = Z cyty @ (70)
v'=0,1,2
= cpup + qu))€%¥ = w(0)e?®" (71)

i.e. the probability distribution remains constant.

7. Concluding remarks

We have analysed the splitting of the quasienergy states in periodically driven quantum
systems due to tunnelling between classical resonance flux tubes in continuation of previous
work on semiclassical EBK quantization [17, 22]. The resulting semiclassical approximation
provides a simple method for computing the quasienergies and their splittings from a few
classical data by means of phase integrals over the flux tube and the dynamical barrier.
Numerical applications to a driven quartic oscillator demonstrated the applicability of this
approximation, which may be useful for more realistic systems because very small tunnelling
splittings are difficult to compute quantum mechanically. Moreover, the semiclassical
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analysis provides a useful skeleton for the overall organization of the quasienergy spectrum,
which can be labelled by semiclassical quantum numbers.

At the present time, we are not aware of experimental data of quantum tunnelling
splittings between classical flux tubes, which allow a direct quantitative application of the
present analysis. There is, however, a strong experimental effort to control and stabilize
states of atomic or molecular systems in time periodic fields, e.g. strong laser fields. In
particular, it should be possible to populate resonance island states, e.g. by controlling the
time variation of suitable system parameters. We hope that our prediction of tunnelling
between flux tubes will be experimentally observed in the future.

In closing, we would like to point out that there are also some open problems in
the theoretical understanding of these tunnelling processes, because the present analysis is
developed and tested for a system, which is almost regular. It should be of some interest
to study the influence of increasing chaoticity on the splittings for tunnelling transitions
through the chaotic separatrix layer. Work along these lines is in progress.
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